Electronica de Potencia
- objetivo
El principal objetivo es el manejo y transformación de la energía de una forma eficiente, por lo que se evitan utilizar elementos resistivos, potenciales generadores de pérdidas por efecto Joule. Los principales dispositivos utilizados por tanto son bobinas y condensadores, así como semiconductores trabajando en modo corte/saturación (on/off, encendido y apagado).
2. Significado
La expresión electrónica de potencia se utiliza para diferenciar el tipo de aplicación que se le da a dispositivos electrónicos, en este caso para transformar y controlar voltajes y corrientes de niveles significativos. Se diferencia así este tipo de aplicación de otras de la electrónica denominadas de baja potencia o también de corrientes débiles
En este tipo de aplicación se reencuentran la electricidad y la electrónica, pues se utiliza el control que permiten los circuitos electrónicos para controlar la conducción (encendido y apagado) de semiconductores de potencia para el manejo de corrientes y voltajes en aplicaciones de potencia. Esto al conformar equipos denominados convertidores estáticos de potencia.
3. Partes de un equipo de potencia Aplicaciones
- Tener dos estados claramente definidos, uno de alta impedancia (bloqueo) y otro de baja impedancia (conducción).
- Poder controlar el paso de un estado a otro con facilidad y pequeña potencia.
- Ser capaces de soportar grandes intensidades y altas tensiones cuando está en estado de bloqueo, con pequeñas caídas de tensión entre sus electrodos, cuando está en estado de conducción. Ambas condiciones lo capacitan para controlar grandes potencias.
- Rapidez de funcionamiento para pasar de un estado a otro.
4. Aplicaciones en la ectronica de potencia
Las principales aplicaciones de los convertidores electrónicos de potencia son las siguientes:
Fuentes de alimentación: En la actualidad han cobrado gran importancia un subtipo de fuentes de alimentación electrónicas, denominadas fuentes de alimentación conmutadas. Estas fuentes se caracterizan por su elevado rendimiento y reducción de volumen necesario.
Control de motores eléctricos: La utilización de convertidores electrónicos permite controlar parámetros tales como la posición, velocidad o par suministrado por un motor.
Calentamiento por inducción: Consiste en el calentamiento de un material conductor a través del campo generado por un inductor. La alimentación del inductor se realiza a alta frecuencia, generalmente en el rango de los kHz, de manera que se hacen necesarios convertidores electrónicos de frecuencia.
Otras: Como se ha comentado anteriormente son innumerables las aplicaciones de la electrónica de potencia. Además de las ya comentadas destacan: sistemas de alimentación ininterrumpida, sistemas de control del factor de potencia, balastos electrónicos para iluminación a alta frecuencia, interface entre fuentes de energía renovables y la red eléctrica, etc.
5. Dispositivos de la electronica de potencia
- Dispositivos semiconductores de potencia
Para estas aplicaciones se han desarrollado una serie de dispositivos semiconductores de potencia, los cuales derivan del diodo o el transistor. Entre estos se encuentran los siguientes:
- Rectificador controlado de silicio (SCR en inglés)
- Triac
- Transistor IGBT, sigla para Insulated Gate Bipolar Transistor, Transistor Bipolar con compuerta aislada
- Tiristor GTO, sigla para Gated Turnoff Thyristor, Tiristor apagado por compuerta
- Tiristor IGCT, sigla para Insulated Gate Controlled Thyristor, Tiristor controlado por compuerta
- Tiristor MCT, sigla para MOS Controlled Thyristor
- Convertidores de la energía eléctrica
Conversión de potencia es el proceso de convertir una forma de energía en otra, esto puede incluir procesos electromecánicos o electroquímicos.
Dichos dispositivos son empleados en equipos que se denominan convertidores estáticos de potencia, clasificados en:
- Rectificadores: convierten corriente alterna en corriente continua
- Inversores: convierten corriente continua en corriente alterna
- Cicloconversores: convierten corriente alterna en corriente alterna de otra frecuencia menor
- Choppers: convierten corriente continua en corriente continua de menor o mayor tensión
En la actualidad esta disciplina está cobrando cada vez más importancia debido principalmente a la elevada eficiencia de los convertidores electrónicos en comparación a los métodos tradicionales, y su mayor versatilidad. Un paso imprescindible para que se produjera esta revolución fue el desarrollo de dispositivos capaces de manejar las elevadas potencias necesarias en tareas de distribución eléctrica o manejo de potentes motores.
5.1 Clacificacion...
Los Tiristores pueden subdividirse en ocho tipos:
Tiristor de conmutación forzada
Tiristor conmutado por linea
Tiristor desactivado por compuerta (GTO)
Tiristor de conducción inversa (RTC)
Tiristor de inducción estático (SITH)
Tiristor desactivado con asistencia de compuerta (GATT)
Rectificador controlado de silicio fotoactivo (LASCR)
Tiristor controlado por MOS (MCT)
Triac
Convertidores de la Energía Eléctrica
Conversión de potencia es el proceso de convertir una forma de energía en otra, esto puede incluir procesos electromecánicos o electroquímicos. Dichos dispositivos son empleados en equipos que se denominan convertidores estáticos de potencia, clasificados en:
- Rectificadores: convierten corriente alterna en corriente continua.
- Inveror: convierten corriente continua en corriente alterna.
- Cicloconversores: convierten corriente alterna en corriente alterna.
- Choppers: convierten corriente continua en corriente continua.
En la actualidad esta disciplina está cobrando cada vez más importancia debido principalmente a la elevada eficiencia de los convertidores electrónicos en comparación a los métodos tradicionales, y su mayor versatilidad. Un paso imprescindible para que se produjera esta revolución fue el desarrollo de dispositivos capaces de manejar las elevadas potencias necesarias en tareas de distribución eléctrica o manejo de potentes motores.
6. Diodos
Los diodos constan de dos partes, una llamada N y la otra llamada P, separados por una juntura llamada barrera o unión. Esta barrera o unión es de 0.3 voltios en el diodo de germanio y de 0.6 voltios aproximadamente en el diodo de silicio.
Polarización directa
Es cuando la corriente que circula por el diodo sigue la ruta de la flecha (la del diodo), o sea del ánodo al cátodo.
En este caso la corriente atraviesa el diodo con mucha facilidad comportándose prácticamente como un corto circuito.
Polarización inversa
Es cuando la corriente en el diodo desea circular en sentido opuesto a la flecha (la flecha del diodo), o sea del cátodo al ánodo.
En este caso la corriente no atraviesa el diodo, y se comporta prácticamente como un circuito abierto.
Nota: El funcionamiento antes mencionado se refiere al diodo ideal, ésto quiere decir que el diodo se toma como un elemento perfecto (como se hace en casi todos los casos), tanto en polarización directa como en polarización inversa.
DIODO SCHOTTKY O DE BARRERA
Son dispositivos que tienen una caída de voltaje directa (VF) muy pequeña, del orden de 0.3 V o menos. Operan a muy altas velocidades y se utilizan en fuentes de potencia, circuitos de alta frecuencia y sistemas digitales. Reciben también el nombre de diodos de recuperación rápida (Fast recovery) o de portadores calientes.- FUNCIONAMIENTO Cuando se realiza una ensambladura entre una terminal metálica y un material semiconductor, el contacto tiene, típicamente, un comportamiento óhmico cualquiera, la resistencia del contacto gobierna la secuencia de la corriente. Cuando este contacto se hace entre un metal y una región semiconductora con la densidad del dopante relativamente baja, las hojas dominantes del efecto debe ser el resistivo, comenzando también a tener un efecto de rectificación
- DESVENTAJAS Las dos principales desventajas del diodo Schottky son: - El diodo Schottky tiene poca capacidad de conducción de corriente en directo (en sentido de la flecha).
- APLICACIONES - En fuentes de baja tensión en la cuales las caídas en los rectificadores son significativas. - Circuitos de alta velocidad para computadoras donde se necesiten grandes velocidades de conmutación
*Rectificadores
7. Tiristores
*SCRTiristor. Un SCR o Tiristor (thyristor en inglés) es un componente electrónico rectificador de estado sólido de 3 terminales: ánodo (A), cátodo (K) y un electrodo de control denominado puerta (G, gate)
Un SCR posee tres conexiones: ánodo, cátodo y puerta. La puerta es la encargada de controlar el paso de corriente entre el ánodo y el cátodo. Funciona básicamente como un diodo rectificador controlado, permitiendo circular la corriente en un solo sentido.
Cuando se produce una variación brusca de tensión entre ánodo y cátodo de un tiristor, éste puede dispararse y entrar en conducción aún sin corriente de puerta. Por ello se da como característica la tasa máxima de subida de tensión que permite mantener bloqueado el SCR. Este efecto se produce debido al condensador parásito existente entre la puerta y el ánodo.
Aplicaciones
Normalmente son usados en diseños donde hay corrientes o voltajes muy grandes, también son comúnmente usados para controlar corriente alternadonde el cambio de polaridad de la corriente revierte en la conexión o desconexión del dispositivo.
*TRIAC
TRIAC o Triodo para Corriente Alterna es un dispositivo semiconductor, de la familia de los transistores. La diferencia con un tiristor convencional es que éste es unidireccional y el TRIAC es bidireccional. De forma coloquial podría decirse que el TRIAC es un interruptor capaz de conmutar lacorriente alterna. Su estructura interna se asemeja en cierto modo a la disposición que formarían dos SCR en antiparalelo. Posee tres electrodos: A1, A2 (en este caso pierden la denominación de ánodo y cátodo) y puerta. El disparo del TRIAC se realiza aplicando una corriente al electrodo puerta.
*GTO
(“Gate Turn-Off Thyristor”)El GTO es un tiristor con capacidad de externa de bloqueo, la puerta le permite controlar las dos transiciones: pasa de bloqueo conducción y viceversa .El GTO tiene una estructura de 4 capas, típica de los componentes de la familia de lostiristores. Su característica principal es su capacidad de entrar en conducción y bloquearse a través de señales adecuadas en el terminal de puerta G.
Estructura
Un tiristor GTO tiene la estructura muy similar a un tiristor SRC convecional, como se muestra en la figura I. con sus 4 capas de silicio (PNPN) y tres terminales: ánodo (A), cátodo (K) y puerta (G).
Funcionamiento
Un tiristor GTO, al igual que un SCR puede activarse mediante la aplicación de una señal positiva de compuerta. Sin embargo, se puede desactivar mediante una señal negativa de compuerta. Un GTO es un dispositivo de enganche y se construir con especificaciones de corriente y voltajes similares a las de un SCR. Un GTO se activa aplicando a su compuerta un pulso positivo corto y se desactiva mediante un pulso negativo corto.
Principales aplicaciones en la industria
· Troceadores y convertidores
· Control de motores asíncronos
· Inversores
· Caldeo inductivo
· Rectificadores
· Soldadura al arco
· Sistema de alimentación ininterrumpida (SAI)
· Control de motores
· Tracción eléctrica
8. Transistores
El transistor, inventado en 1951, es el componente electrónico estrella, pues inició una auténtica revolución en la electrónica que ha superado cualquier previsión inicial. También se llama Transistor Bipolar o Transistor Electrónico.El Transistor es un componente electrónico formado por materiales semiconductores, de uso muy habitual pues lo encontramos presente en cualquiera de los aparatos de uso cotidiano como las radios, alarmas, automóviles, ordenadores, etc.
*El Transistor Bipolar o BJT
El transistor bipolar es el más común de los transistores, y como los diodos, puede ser de germanio o silicio.Existen dos tipos transistores: el NPN y el PNP, y la dirección del flujo de la corriente en cada caso, lo indica la flecha que se ve en el gráfico de cada tipo de transistor.
El transistor es un dispositivo de 3 patillas con los siguientes nombres: base (B), colector (C) y emisor (E), coincidiendo siempre, el emisor, con la patilla que tiene la flecha en el gráfico de transistor.El transistor es un amplificador de corriente, esto quiere decir que si le introducimos una cantidad de corriente por una de sus patillas (base), el entregará por otra (emisor), una cantidad mayor a ésta, en un factor que se llama amplificación. Este factor se llama b (beta) y es un dato propio de cada transistor.
El transistor es un dispositivo de 3 patillas con los siguientes nombres: base (B), colector (C) y emisor (E), coincidiendo siempre, el emisor, con la patilla que tiene la flecha en el gráfico de transistor.El transistor es un amplificador de corriente, esto quiere decir que si le introducimos una cantidad de corriente por una de sus patillas (base), el entregará por otra (emisor), una cantidad mayor a ésta, en un factor que se llama amplificación. Este factor se llama b (beta) y es un dato propio de cada transistor.
*MOSFET:
MOSFET. Son las siglas de Metal Oxide Semiconductor Field Effect Transistor. Consiste en un transistor de efecto de campo basado en la estructura MOS. Es el transistor más utilizado en la industria microelectrónica. La práctica totalidad de los circuitos integrados de uso comercial están basados en transistores MOSFET.
Fue ideado teóricamente por el alemán Julius Von Edgar Lilienfeld en 1930, aunque debido a problemas de carácter tecnológico y el desconocimiento acerca de cómo se comportan los electrones sobre la superficie del semiconductor no se pudieron fabricar hasta décadas más tarde. Tambien se llama mosfet a los aislados por juntura de dos componentes.
Funcionamiento
Un transistor MOSFET consiste en un sustrato de material semiconductor dopado en el que, mediante técnicas de difusión de dopantes, se crean dos islas de tipo opuesto separadas por un área sobre la cual se hace crecer una capa de dieléctrico culminada por una capa de conductor.
*IGBT
El transistor bipolar de puerta aislada (IGBT, del inglés Insulated Gate Bipolar Transistor) es un dispositivo semiconductor que generalmente se aplica como interruptor controlado en circuitos de electrónica de potencia. Este dispositivo posee la características de las señales de puerta de los transistores de efecto campo con la capacidad de alta corriente y bajo voltaje de saturación del transistor bipolar, combinando una puerta aislada FET para la entrada de control y un transistor bipolar como interruptor en un solo dispositivo. El circuito de excitación del IGBT es como el del MOSFET, mientras que las características de conducción son como las del BJT.
Los transistores IGBT han permitido desarrollos que no habían sido viables hasta entonces, en particular en los Variadores de frecuencia así como en las aplicaciones en máquinas eléctricas y convertidores de potencia que nos acompañan cada día y por todas partes, sin que seamos particularmente conscientes de eso.
El IGBT es adecuado para velocidades de conmutación de hasta 100 kHz y ha sustituido al BJT en muchas aplicaciones. Es usado en aplicaciones de altas medidas energía como fuente conmutada, control de la tracción en motores y cocina. Grandes módulos de IGBT consisten en muchos dispositivos colocados en paralelo que pueden manejar altas corrientes del orden de cientos de amperios con voltajes de bloqueo de 6.000 voltios.
Se puede concebir el IGBT como un transistor Darlington híbrido. Tiene la capacidad de manejo de corriente de un bipolar pero no requiere de la corriente de base para mantenerse en conducción. Sin embargo las corrientes transitorias de conmutación de la base pueden ser igualmente altas. En aplicaciones de electrónica de potencia es intermedio entre los tiristores y los mosfet. Maneja más potencia que los segundos siendo más lento que ellos y lo inverso respecto a los primeros.
Este es un dispositivo para la conmutación en sistemas de alta tensión. La tensión de control de puerta es de unos 15 V. Esto ofrece la ventaja de controlar sistemas de potencia aplicando una señal eléctrica de entrada muy débil en la puerta.
cuestinario
1- que es un transistor?
2- de que esta compueto un transistor?
3- cuales son las terminales de un transistor?
4- menciona 3 tipos de transistor?
5- como se activa un transistor?
6- menciona las zonas de trabajo de un transistor?
7- aplicaciones mas comunes de un transistor?
8- que es un transistor BJT?
9- menciona 2 tipos de transistores BJT?
10- que es un JFET?
11- que diferencias existen entre un BJT y un JFET?
12-Cual es funcionamoento del transito?
13-Que es un Mosfet?
14-Que es un rectificador?
15-Menciona algunos elementos de potencia
16-Que es un TRIAC?
- http://www.ugr.es/~amroldan/enlaces/dispo_potencia/introd.htm
- http://es.wikipedia.org/wiki/Impedancia
- http://www.eueti.uvigo.es/files/material_docente/671/introduccion_parte_i.pdf
- http://www.iuma.ulpgc.es/~roberto/asignaturas/EI/transparencias/EI_Tema_2.Intro_EP.pdf
- http://www.monografias.com/trabajos-pdf2/diodo-schottky-barrera/diodo-schottky-barrera.pdf
- http://es.wikipedia.org/wiki/Electr%C3%B3nica_de_potencia
No hay comentarios:
Publicar un comentario